32 research outputs found

    Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis

    Get PDF
    During the seminiferous epithelial cycle of spermatogenesis, the ectoplasmic specialization (ES, a testis-specific adherens junction, AJ, type) maintains the polarity of elongating/elongated spermatids and confers adhesion to Sertoli cells in the seminiferous epithelium, and known as the apical ES. On the other hand, the ES is also found at the Sertoli-Sertoli cell interface at the blood-testis barrier (BTB) known as basal ES, which together with the tight junction (TJ), maintains Sertoli cell polarity and adhesion, creating a functional barrier that limits paracellular transport of substances across the BTB. However, the apical and basal ES are segregated and restricted to the adluminal compartment and the BTB, respectively. During the transit of preleptotene spermatocytes across the BTB and the release of sperm at spermiation at stage VIII of the seminiferous epithelial cycle, both the apical and basal ES undergo extensive restructuring to facilitate cell movement at these sites. The regulation of these events, in particular their coordination, remains unclear. Studies in other epithelia have shown that the tubulin cytoskeleton is intimately related to cell movement, and MARK [microtubule-associated protein (MAP)/microtubule affinity-regulating kinase] family kinases are crucial regulators of tubulin cytoskeleton stability. Herein MARK4, the predominant member of the MARK protein family in the testis, was shown to be expressed by both Sertoli and germ cells. MARK4 was also detected at the apical and basal ES, displaying highly restrictive spatiotemporal expression at these sites, as well as co-localizing with markers of the apical and basal ES. The expression of MARK4 was found to be stage-specific during the epithelial cycle, structurally associating with α-tubulin and the desmosomal adaptor plakophilin-2, but not with actin-based BTB proteins occludin, β-catenin and Eps8 (epidermal growth factor receptor pathway substrate 8, an actin bundling and barbed end capping protein). More importantly, it was shown that the expression of MARK4 tightly associated with the integrity of the apical ES because a diminished expression of MARK4 associated with apical ES disruption that led to the detachment of elongating/elongated spermatids from the epithelium. These findings thus illustrate that the integrity of apical ES, an actin-based and testis-specific AJ, is dependent not only on the actin filament network, but also on the tubulin-based cytoskeleton

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    Nitric oxide-cGMP signaling: Its role in cell junction dynamics during spermatogenesis

    No full text
    During spermatogenesis, development of spermatogonia into elongated spermatids takes place in the seminiferous epithelium of the adult mammalian testis. Specifically, post-meiotic germ cell maturation occurs in a unique microenvironment sequestered from the systemic circulation by the blood-testis barrier (BTB), which is formed by adjacent Sertoli cells. Therefore, an intact BTB, as ell as stable Sertoli-germ cell adhesion, are important criteria for successful spermatogenesis. To date, numerous factors have been shown to influence spermatogenesis, and among them is the well-studied nitric oxide (.NO)/guanosine 3′,5′-cyclic monophosphate (cGMP) signaling cascade. The enzymes of this pathway, namely nitric oxide synthase, soluble guanylate cyclase and cGMP-dependent protein kinase, have all been shown to regulate cell junctions in the testis. Likewise, recent findings have shown that this signaling cascade also plays a critical role in the regulation of Sertoli-germ cell adhesion. In this mini-review, we briefly discuss the regulatory role of each protein component of the NO/ cGMP pathway in the context of testicular junction dynamics, as well as their importance in fertility and male contraception

    Interleukin 1 alpha (IL1A) is a novel regulator of the blood-testis barrier in the rat

    No full text
    Throughout spermatogenesis, leptotene spermatocytes must traverse the blood-testis barrier (BTB) at stages VIII-XI to gain entry into the adluminal compartment for continued development. However, the mechanism underlying BTB restructuring remains somewhat elusive. In this study, interleukin 1 alpha (IL1A) was administered intratesticularly to adult rats in order to assess its effects on spermatogenesis. IL1A was shown to perturb Sertoli-germ cell adhesion, resulting in germ cell loss from ∼50% of seminiferous tubules by 15 days posttreatment. Equally important, the functional integrity of the BTB was compromised when inulin-fluorescein isothiocyanate was detected in the adluminal compartment of the seminiferous epithelium following its administration via the jugular vein. Interestingly, IL1A did not affect the steady-state levels of proteins that confer BTB function, namely OCLN, CLDN1, F11R, TJP1, and CDH2. Instead, the localizations of OCLN, F11R, and TJP1 in the seminiferous epithelium were altered; these proteins appeared to move away from sites of cell-cell contact. Moreover, IL1A was shown to perturb the orderly arrangement of filamentous actin at the BTB and apical ectoplasmic specialization with distinct areas illustrating loss of actin filaments. Taken collectively, these results suggest that IL1A-induced BTB disruption is not mediated via the reduction of target protein levels. Instead, IL1A\u27s primary cellular target appears to be the Sertoli cell actin cytoskeleton. It is possible that localized production of IL1A by Sertoli and/or germ cells in vivo results in BTB restructuring, and this may facilitate the movement of leptotene spermatocytes across the BTB

    Adjudin disrupts spermatogenesis by targeting drug transporters: Lesson from the breast cancer resistance protein (BCRP)

    Get PDF
    For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood–testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII–VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains

    Interactions of laminin β3 fragment with β1-integrin receptor: A revisit of the apical ectoplasmic specialization-blood-testis-barrier-hemidesmosome functional axis in the testis

    No full text
    Recent studies have demonstrated the presence of a functional axis that coordinates the events of spermiation and blood-testis barrier (BTB) restructuring which take place simultaneously at the opposite ends of the seminiferous epithelium at stage VIII of the epithelial cycle of spermatogenesis in the rat testis. In short, the disruption of the apical ectoplasmic specialization (apical ES) at the Sertoli cell-elongated spermatid interface, which facilitates the release of sperm at spermiation near the tubule lumen, is coordinated with restructuring at the BTB to accommodate the transit of preleptotene spermatocytes across the immunological barrier near the basement membrane. These two events are likely coordinated by a functional axis involving hemidesmosome at the Sertoli cell-basement membrane interface, and it was designated the apical ES-BTB-hemidesmosome axis. It was demonstrated that fragments of laminin chains (e.g., laminin β3 or γ3 chains) derived from the α6β1-integrin-laminin333 protein complex at the apical ES, which were likely generated via the action of MMP-2 (matrix metalloprotease-2, MMP2) prior to spermiation, acted as biologically active peptides to perturb the BTB permeability function by accelerating protein endocytosis (e.g., occludin) at the site, thereby destabilizing the BTB integrity to facilitate the transit of preleptotene spermatocytes. These laminin fragments also perturbed hemidesmosome function via their action on β1-integrin, a component of hemidesmosome in the testis, which in turn, sent a signal to further destabilize the BTB function. As such, the events of spermiation and BTB restructuring are coordinated via this functional axis. Recent studies using animal models treated with toxicants, such as mono-(2-ethylhexyl) phthalate (MEHP), or adjudin, a male contraceptive under investigation, have also supported the presence of this functional axis in the mouse. In this short review, we critically evaluate the role of this local functional axis in the seminiferous epithelium in spermatogenesis. We also provide molecular modeling information on the interactions between biologically active laminin fragments and β1-integrin, which will be important to assist in the design of more potent laminin-based peptides to disrupt this axis, thereby perturbing spermatogenesis for male contraception and to understand the underlying biology that coordinates spermiation and BTB restructuring during spermatogenesis

    Characterization of human pineal gland proteome

    No full text
    We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland.</p
    corecore